Journal of Shoulder and Elbow Surgery

Influence of humeral abduction angle on axial rotation and contact area at the glenohumeral joint

Published:December 17, 2018DOI:


      Although the elevation angle of the arm affects the range of rotation, it has not been evaluated up to the maximal abduction angle. In this study we conducted an evaluation up to maximal abduction and determined the contact patterns at the glenohumeral (GH) joint.


      Fourteen healthy volunteers (12 men and 2 women; mean age, 26.9 years) with normal shoulders (14 right and 8 left) were instructed to rotate their shoulders at 0°, 90°, 135°, and maximal abduction for each shoulder at a time. Using 2-dimensional and 3-dimensional single-plane image registration, the internal rotation (IR), external rotation (ER), and range of motion (ROM; ie, axial rotations) at the thoracohumeral (TH) and GH joints, and the contribution ratio (%ROM = GH-ROM/TH-ROM) were calculated for each abduction. The glenoid position with respect to the humeral head was also analyzed.


      The TH-IR and TH-ER shifted toward an ER with increasing abduction angle, whereas the TH-ROM significantly decreased except at abduction between 0° and 90° (P < .001). The GH-IR and GH-ROM significantly decreased except at abduction between 0° and 90° (P < .001), but the GH-ER remained constant regardless of the abduction. The contribution ratio exceeded 80% for every abduction angle. The glenoid moved on the central and posterior areas of the humeral head at 0° and 90° abduction, respectively, and on the posterosuperior and anterosuperior areas at 135° and maximal abduction, respectively.


      Our results provide new knowledge about wide axial rotation up to maximal abduction and constant GH-ER at any abduction.

      Level of evidence


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Shoulder and Elbow Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bonnefoy-Mazure A.
        • Slawinski J.
        • Riquet A.
        • Leveque J.M.
        • Miller C.
        • Cheze L.
        Rotation sequence is an important factor in shoulder kinematics. Application to the elite players' flat serves.
        J Biomech. 2010; 43: 2022-2025
        • Codman E.A.
        Chapter 2: normal motions of the shoulder joint.
        in: Codman E.A. The shoulder: rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. 0-89874-731-7 G. Miller & Co. Medical Publishers, Inc., New York1984: 32-64
        • Gates D.H.
        • Walters L.S.
        • Cowley J.
        • Wilken J.M.
        • Resnik L.
        Range of motion requirements for upper-limb activities of daily living.
        Am J Occup Ther. 2016; 70 (7001350010p1-10)
        • Haering D.
        • Raison M.
        • Begon M.
        Measurement and description of three-dimensional shoulder range of motion with degrees of freedom interactions.
        J Biomech Eng. 2014; 136 (084502)
        • Hamming D.
        • Braman J.P.
        • Phadke V.
        • LaPrade R.F.
        • Ludewig P.M.
        The accuracy of measuring glenohumeral motion with a surface humeral cuff.
        J Biomech. 2012; 45: 1161-1168
        • Humphries A.
        • Cirovic S.
        • Bull A.M.
        • Hearnden A.
        • Shaheen A.F.
        Assessment of the glenohumeral joint's active and passive axial rotational range.
        J Shoulder Elbow Surg. 2015; 24: 1974-1981
        • Inui H.
        • Tanaka H.
        • Nobuhara K.
        Glenohumeral relationships at different angles of abduction.
        Surg Radiol Anat. 2014; 36: 1009-1014
        • Jansen J.H.
        • de Gast A.
        • Snijders C.J.
        Glenohumeral elevation-dependent influence of anterior glenohumeral capsular lesions on passive axial humeral rotation.
        J Biomech. 2006; 39: 1702-1707
        • Karduna A.R.
        • McClure P.W.
        • Michener L.A.
        • Sennett B.
        Dynamic measurements of three-dimensional scapular kinematics: a validation study.
        J Biomech Eng. 2001; 123: 184-190
        • Koishi H.
        • Goto A.
        • Tanaka M.
        • Omori Y.
        • Futai K.
        • Yoshikawa H.
        • et al.
        In vivo three-dimensional motion analysis of the shoulder joint during internal and external rotation.
        Int Orthop. 2011; 35: 1503-1509
        • Konda S.
        • Yanai T.
        • Sakurai S.
        Scapular rotation to attain the peak shoulder external rotation in tennis serve.
        Med Sci Sports Exerc. 2010; 42: 1745-1753
        • Konda S.
        • Yanai T.
        • Sakurai S.
        Configuration of the shoulder complex during the arm-cocking phase in baseball pitching.
        Am J Sports Med. 2015; 43: 2445-2451
        • Kozono N.
        • Okada T.
        • Takeuchi N.
        • Hamai S.
        • Higaki H.
        • Ikebe S.
        • et al.
        In vivo kinematic analysis of the glenohumeral joint during dynamic full axial rotation and scapular plane full abduction in healthy shoulders.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 2032-2040
        • Levine W.N.
        • Brandon M.L.
        • Stein B.S.
        • Gardner T.R.
        • Bigliani L.U.
        • Ahmad C.S.
        Shoulder adaptive changes in youth baseball players.
        J Shoulder Elbow Surg. 2006; 15: 562-566
        • Magermans D.J.
        • Chadwick E.K.
        • Veeger H.E.
        • van der Helm F.C.
        Requirements for upper extremity motions during activities of daily living.
        Clin Biomech (Bristol, Avon). 2005; 20: 591-599
        • Massimini D.F.
        • Boyer P.J.
        • Papannagari R.
        • Gill T.J.
        • Warner J.P.
        • Li G.
        In-vivo glenohumeral translation and ligament elongation during abduction and abduction with internal and external rotation.
        J Orthop Surg Res. 2012; 7: 29
        • McClure P.W.
        • Michener L.A.
        • Sennett B.J.
        • Karduna A.R.
        Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo.
        J Shoulder Elbow Surg. 2001; 10: 269-277
        • McCully S.P.
        • Kumar N.
        • Lazarus M.D.
        • Karduna A.R.
        Internal and external rotation of the shoulder: effects of plane, end-range determination, and scapular motion.
        J Shoulder Elbow Surg. 2005; 14: 602-610
        • Meskers C.G.
        • Vermeulen H.M.
        • de Groot J.H.
        • van Der Helm F.C.
        • Rozing P.M.
        3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device.
        Clin Biomech (Bristol, Avon). 1998; 13: 280-292
        • Miyashita K.
        • Kobayashi H.
        • Koshida S.
        • Urabe Y.
        Glenohumeral, scapular, and thoracic angles at maximum shoulder external rotation in throwing.
        Am J Sports Med. 2010; 38: 363-368
        • Nobuhara K.
        Chapter 9: the shoulder in sports. A: analysis of throwing motion and injuries.
        in: Nobuhara K. The shoulder: its function and clinical aspects. 978-4-260-01676-6 World Scientific Publishing Co. Pte. Ltd., Singapore2003: 401-437
        • Omori Y.
        • Yamamoto N.
        • Koishi H.
        • Futai K.
        • Goto A.
        • Sugamoto K.
        • et al.
        Measurement of the glenoid track in vivo as investigated by 3-Dimensional motion analysis using open MRI.
        Am J Sports Med. 2014; 42: 1290-1295
        • Ribeiro A.
        • Pascoal A.G.
        Scapular contribution for the end-range of shoulder axial rotation in overhead athletes.
        J Sports Sci Med. 2012; 11: 676-681
        • Roren A.
        • Lefevre-Colau M.M.
        • Roby-Brami A.
        • Revel M.
        • Fermanian J.
        • Gautheron V.
        • et al.
        Modified 3D scapular kinematic patterns for activities of daily living in painful shoulders with restricted mobility: a comparison with contralateral unaffected shoulders.
        J Biomech. 2012; 45: 1305-1311
        • Rundquist P.J.
        • Anderson D.D.
        • Guanche C.A.
        • Ludewig P.M.
        Shoulder kinematics in subjects with frozen shoulder.
        Arch Phys Med Rehabil. 2003; 84: 1473-1479
        • Rundquist P.J.
        • Obrecht C.
        • Woodruff L.
        Three-dimensional shoulder kinematics to complete activities of daily living.
        Am J Phys Med Rehabil. 2009; 88: 623-629
        • Saha A.K.
        The classic mechanism of shoulder movements and a plea for the recognition of “zero position” of glenohumeral joint.
        Clin Orthop Relat Res. 1983; 173: 3-10
        • Sahara W.
        • Sugamoto K.
        • Murai M.
        • Tanaka H.
        • Yoshikawa H.
        The three-dimensional motions of glenohumeral joint under semi-loaded condition during arm abduction using vertically open MRI.
        Clin Biomech (Bristol, Avon). 2007; 22: 304-312
        • Seminati E.
        • Marzari A.
        • Vacondio O.
        • Minetti A.E.
        Shoulder 3D range of motion and humerus rotation in two volleyball spike techniques: injury prevention and performance.
        Sports Biomech. 2015; 14: 216-231
        • Southgate D.F.
        • Hill A.M.
        • Alexander S.
        • Wallace A.L.
        • Hansen U.N.
        • Bull A.M.
        The range of axial rotation of the glenohumeral joint.
        J Biomech. 2009; 42: 1307-1312
        • Stokdijk M.
        • Eilers P.H.
        • Nagels J.
        • Rozing P.M.
        External rotation in the glenohumeral joint during elevation of the arm.
        Clin Biomech (Bristol, Avon). 2003; 18: 296-302
        • Takagi Y.
        • Oi T.
        • Tanaka H.
        • Inui H.
        • Fujioka H.
        • Tanaka J.
        • et al.
        Increased horizontal shoulder abduction is associated with an increase in shoulder joint load in baseball pitching.
        J Shoulder Elbow Surg. 2014; 23: 1757-1762
        • Turkel S.J.
        • Panio M.W.
        • Marshall J.L.
        • Girgis F.G.
        Stabilizing mechanisms preventing anterior dislocation of the glenohumeral joint.
        J Bone Joint Surg Am. 1981; 63: 1208-1217
        • Urayama M.
        • Itoi E.
        • Hatakeyama Y.
        • Pradhan R.L.
        • Sato K.
        Function of the 3 portions of the inferior glenohumeral ligament: a cadaveric study.
        J Shoulder Elbow Surg. 2001; 10: 589-594
        • van Andel C.J.
        • Wolterbeek N.
        • Doorenbosch C.A.
        • Veeger D.H.
        • Harlaar J.
        Complete 3D kinematics of upper extremity functional tasks.
        Gait Posture. 2008; 27: 120-127
        • Veeger H.E.
        • Magermans D.J.
        • Nagels J.
        • Chadwick E.K.
        • van der Helm F.C.
        A kinematical analysis of the shoulder after arthroplasty during a hair combing task.
        Clin Biomech (Bristol, Avon). 2006; 21: S39-S44
        • Wu G.
        • van der Helm F.C.
        • Veeger H.E.
        • Makhsous M.
        • Van Roy P.
        • Anglin C.
        • et al.
        ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand.
        J Biomech. 2005; 38: 981-992
        • Yamamoto N.
        • Itoi E.
        • Abe H.
        • Minagawa H.
        • Seki N.
        • Shimada Y.
        • et al.
        Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track.
        J Shoulder Elbow Surg. 2007; 16: 649-656
        • Yamazaki T.
        • Watanabe T.
        • Nakajima Y.
        • Sugamoto K.
        • Tomita T.
        • Yoshikawa H.
        • et al.
        Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy.
        IEEE Trans Med Imaging. 2004; 23: 602-612