Advertisement
Journal of Shoulder and Elbow Surgery

Glenoid implant orientation and cement failure in total shoulder arthroplasty: a finite element analysis

Published:January 14, 2013DOI:https://doi.org/10.1016/j.jse.2012.09.007

      Background

      To minimize glenoid implant loosening in total shoulder arthroplasty (TSA), the ideal surgical procedure achieves correction to neutral version, complete implant–bone contact, and bone stock preservation. These goals, however, are not always achievable, and guidelines to prioritize their impact are not well established. The purpose of this study was to investigate how the degree of glenoid correction affects potential cement failure.

      Methods

      Eight patient-specific computer models were created for 4 TSA scenarios with different permutations of retroversion correction and implant–bone contact. Two bone models were used: a homogeneous cortical bone model and a heterogeneous cortical-trabecular bone model. A 750-N load was simulated, and cement stress was calculated. The risk of cement mantle fracture was reported as the percentage of cement stress exceeding the material endurance limit.

      Results

      Orienting the glenoid implant in retroversion resulted in the highest risk of cement fracture in a homogeneous bone model (P < .05). In the heterogeneous bone model, complete correction resulted in the highest risk of failure (P = .0028). A positive correlation (ρ = 0.901) was found between the risk of cement failure and amount of exposed trabecular bone.

      Conclusions

      Incorporating trabecular bone into the model changed the effect of implant orientation on cement failure. As exposed trabecular bone increased, the risk of cement fracture increased. This may be due to shifting the load-bearing support underneath the cement from cortical bone to trabecular bone.

      Level of evidence

      Keywords

      To read this article in full you will need to make a payment

      References

        • Anglin C.
        • Wyss U.P.
        • Nyffeler R.W.
        • Gerber C.
        Loosening performance of cemented glenoid prosthesis design pairs.
        Clin Biomech (Bristol, Avon). 2001; 16: 144-150
        • Anglin C.
        • Wyss U.P.
        • Pichora D.R.
        Mechanical testing of shoulder prostheses and recommendations for glenoid design.
        J Shoulder Elbow Surg. 2000; 9: 323-331
        • Bohsali K.I.
        • Wirth M.A.
        • Rockwood Jr., C.A.
        Complications of total shoulder arthroplasty.
        J Bone Joint Surg Am. 2006; 88: 2279-2292https://doi.org/10.2106/JBJS.F.00125
        • Braman J.P.
        • Falicov A.
        • Boorman R.
        • Matsen 3rd, F.A.
        Alterations in surface geometry in retrieved polyethylene glenoid component.
        J Orthop Res. 2006; 24: 1249-1260https://doi.org/10.1002/jor.20158
        • Cattaneo P.M.
        • Dalstra M.
        • Frich L.H.
        A three-dimensional finite element model from computed tomography data: a semi-automated method.
        Proc Inst Mech Eng H. 2001; 215: 203-213
        • Clavert P.
        • Millett P.J.
        • Warner J.J.
        Glenoid resurfacing: what are the limits to asymmetric reaming for posterior erosion?.
        J Shoulder Elbow Surg. 2007; 16: 843-848https://doi.org/10.1016/j.jse.2007.03.015
        • Collins D.
        • Tencer A.
        • Sidles J.
        • Matsen 3rd, F.
        Edge displacement and deformation of glenoid components in response to eccentric loading. The effect of preparation of the glenoid bone.
        J Bone Joint Surg Am. 1992; 74: 501-507
        • Couteau B.
        • Mansat P.
        • Estivalezes E.
        • Darmana R.
        • Mansat M.
        • Egan J.
        Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis.
        Clin Biomech (Bristol, Avon). 2001; 16: 566-575
        • Davies J.P.
        • Burke D.W.
        • O'Connor D.O.
        • Harris W.H.
        Comparison of the fatigue characteristics of centrifuged and uncentrifuged Simplex P bone cement.
        J Orthop Res. 1987; 5: 366-371
        • Edwards T.B.
        • Kadakia N.R.
        • Boulahia A.
        • Kempf J.F.
        • Boileau P.
        • Nemoz C.
        • et al.
        A comparison of hemiarthroplasty and total shoulder arthroplasty in the treatment of primary glenohumeral osteoarthritis: results of a multicenter study.
        J Shoulder Elbow Surg. 2003; 12: 207-213https://doi.org/10.1016/S1058-2746(02)86804-5
        • Farron A.
        • Terrier A.
        • Buchler P.
        Risks of loosening of a prosthetic glenoid implanted in retroversion.
        J Shoulder Elbow Surg. 2006; 15: 521-526https://doi.org/10.1016/j.jse.2005.10.003
        • Franklin J.L.
        • Barrett W.P.
        • Jackins S.E.
        • Matsen 3rd, F.A.
        Glenoid loosening in total shoulder arthroplasty. Association with rotator cuff deficiency.
        J Arthroplasty. 1988; 3: 39-46
        • Franta A.K.
        • Lenters T.R.
        • Mounce D.
        • Neradilek B.
        • Matsen 3rd, F.A.
        The complex characteristics of 282 unsatisfactory shoulder arthroplasties.
        J Shoulder Elbow Surg. 2007; 16: 555-562https://doi.org/10.1016/j.jse.2006.11.004
        • Friedman R.J.
        • LaBerge M.
        • Dooley R.L.
        • O'Hara A.L.
        Finite element modeling of the glenoid component: Effect of design parameters on stress distribution.
        J Shoulder Elbow Surg. 1992; 1: 261-270
        • Gunther S.B.
        • Graham J.
        • Norris T.R.
        • Ries M.D.
        • Pruitt L.
        Retrieved glenoid components: a classification system for surface damage analysis.
        J Arthroplasty. 2002; 17: 95-100https://doi.org/10.1054/arth.2002.27671
        • Gupta S.
        • van der Helm F.C.
        • van Keulen F.
        Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty.
        J Biomech. 2004; 37: 1777-1786https://doi.org/10.1016/j.jbiomech.2004.02.001
        • Haines J.F.
        • Trail I.A.
        • Nuttall D.
        • Birch A.
        • Barrow A.
        The results of arthroplasty in osteoarthritis of the shoulder.
        J Bone Joint Surg Br. 2006; 88: 496-501https://doi.org/10.1302/0301-620X.88B4.16604
        • Hoenecke Jr., H.R.
        • Hermida J.C.
        • Dembitsky N.
        • Patil S.
        • D'Lima D.D.
        Optimizing glenoid component position using three-dimensional computed tomography reconstruction.
        J Shoulder Elbow Surg. 2008; 17: 637-641https://doi.org/10.1016/j.jse.2007.11.021
        • Hopkins A.R.
        • Hansen U.N.
        • Amis A.A.
        • Knight L.
        • Taylor M.
        • Levy O.
        • et al.
        Wear in the prosthetic shoulder: association with design parameters.
        J Biomech Eng. 2007; 129: 223-230https://doi.org/10.1115/1.2486060
        • Iannotti J.P.
        • Norris T.R.
        Influence of preoperative factors on outcome of shoulder arthroplasty for glenohumeral osteoarthritis.
        J Bone Joint Surg Am. 2003; 85: 251-258
        • Iannotti J.P.
        • Spencer E.E.
        • Winter U.
        • Deffenbaugh D.
        • Williams G.
        Prosthetic positioning in total shoulder arthroplasty.
        J Shoulder Elbow Surg. 2005; 14: 111S-121Shttps://doi.org/10.1016/j.jse.2004.09.026
        • Kwon Y.W.
        • Powell K.A.
        • Yum J.K.
        • Brems J.J.
        • Iannotti J.P.
        Use of three-dimensional computed tomography for the analysis of the glenoid anatomy.
        J Shoulder Elbow Surg. 2005; 14: 85-90https://doi.org/10.1016/j.jse.2004.04.011
        • Lacroix D.
        • Murphy L.A.
        • Prendergast P.J.
        Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems.
        J Biomech Eng. 2000; 122: 430-436
        • Mabrey J.D.
        • Afsar-Keshmiri A.
        • Engh G.A.
        • Sychterz C.J.
        • Wirth M.A.
        • Rockwood C.A.
        • et al.
        Standardized analysis of UHMWPE wear particles from failed total joint arthroplasties.
        J Biomed Mater Res. 2002; 63: 475-483https://doi.org/10.1002/jbm.10302
        • Mansat P.
        • Briot J.
        • Mansat M.
        • Swider P.
        Evaluation of the glenoid implant survival using a biomechanical finite element analysis: influence of the implant design, bone properties, and loading location.
        J Shoulder Elbow Surg. 2007; 16: S79-S83https://doi.org/10.1016/j.jse.2005.11.010
        • Matsen F.A.
        • Clinton J.
        • Lynch J.
        • Bertelsen A.
        • Richardson M.L.
        Glenoid component failure in total shoulder arthroplasty.
        J Bone Joint Surg Am. 2008; 90A: 885-896https://doi.org/10.2106/Jbjs.G.01263
        • Mullaji A.B.
        • Beddow F.H.
        • Lamb G.H.
        CT measurement of glenoid erosion in arthritis.
        J Bone Joint Surg Br. 1994; 76: 384-388
        • Neer 2nd, C.S.
        • Morrison D.S.
        Glenoid bone-grafting in total shoulder arthroplasty.
        J Bone Joint Surg Am. 1988; 70: 1154-1162
        • Neer 2nd, C.S.
        • Watson K.C.
        • Stanton F.J.
        Recent experience in total shoulder replacement.
        J Bone Joint Surg Am. 1982; 64: 319-337
        • Nowak D.D.
        • Bahu M.J.
        • Gardner T.R.
        • Dyrszka M.D.
        • Levine W.N.
        • Bigliani L.U.
        • et al.
        Simulation of surgical glenoid resurfacing using three-dimensional computed tomography of the arthritic glenohumeral joint: the amount of glenoid retroversion that can be corrected.
        J Shoulder Elbow Surg. 2009; 18: 680-688https://doi.org/10.1016/j.jse.2009.03.019
        • Oosterom R.
        • van Ostayen R.A.J.
        • Antonelli V.
        • Bersee H.E.N.
        Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty.
        Proc Inst Mech Eng H. 2005; 219: 425-435https://doi.org/10.1243/095441105x34455
        • Poppen N.K.
        • Walker P.S.
        Forces at the glenohumeral joint in abduction.
        Clin Orthop Relat Res. 1978; 135: 165-170
        • Scalise J.J.
        • Bryan J.
        • Polster J.
        • Brems J.J.
        • Iannotti J.P.
        Quantitative analysis of glenoid bone loss in osteoarthritis using three-dimensional computed tomography scans.
        J Shoulder Elbow Surg. 2008; 17: 328-335https://doi.org/10.1016/j.jse.2007.07.013
        • Scalise J.J.
        • Codsi M.J.
        • Bryan J.
        • Brems J.J.
        • Iannotti J.P.
        The influence of three-dimensional computed tomography images of the shoulder in preoperative planning for total shoulder arthroplasty.
        J Bone Joint Surg Am. 2008; 90A: 2438-2445https://doi.org/10.2106/Jbjs.G.01341
        • Scarlat M.M.
        • Matsen 3rd, F.A.
        Observations on retrieved polyethylene glenoid components.
        J Arthroplasty. 2001; 16: 795-801
        • Schileo E.
        • Taddei F.
        • Malandrino A.
        • Cristofolini L.
        • Viceconti M.
        Subject-specific finite element models can accurately predict strain levels in long bones.
        J Biomech. 2007; 40: 2982-2989https://doi.org/10.1016/j.jbiomech.2007.02.010
        • Skirving A.P.
        Total shoulder arthroplasty – current problems and possible solutions.
        J Orthop Sci. 1999; 4: 42-53
        • Sperling J.W.
        • Cofield R.H.
        • Steinmann S.P.
        Shoulder arthroplasty for osteoarthritis secondary to glenoid dysplasia.
        J Bone Joint Surg Am. 2002; 84: 541-546
        • Stone K.D.
        • Grabowski J.J.
        • Cofield R.H.
        • Morrey B.F.
        • An K.N.
        Stress analyses of glenoid components in total shoulder arthroplasty.
        J Shoulder Elbow Surg. 1999; 8: 151-158
        • Terrier A.
        • Brighenti V.
        • Pioletti D.P.
        • Farron A.
        Importance of polyethylene thickness in total shoulder arthroplasty: a finite element analysis.
        Clin Biomech (Bristol, Avon). 2012; 27: 443-448https://doi.org/10.1016/j.clinbiomech.2011.12.003
        • Terrier A.
        • Buchler P.
        • Farron A.
        Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty.
        J Shoulder Elbow Surg. 2006; 15: 515-520https://doi.org/10.1016/j.jse.2005.09.021
        • Terrier A.
        • Buchler P.
        • Farron A.
        Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
        Clin Biomech (Bristol, Avon). 2005; 20: 710-717https://doi.org/10.1016/j.clinbiomech.2005.03.010
        • Van der helm F.C.T.
        Analysis of the kinematic and dynamic behavior of the shoulder mechanism.
        J Biomech. 1994; 27: 527-550
        • Walch G.
        • Badet R.
        • Boulahia A.
        • Khoury A.
        Morphologic study of the glenoid in primary glenohumeral osteoarthritis.
        J Arthroplasty. 1999; 14: 756-760
        • Walch G.
        • Young A.A.
        • Boileau P.
        • Loew M.
        • Gazielly D.
        • Mole D.
        Patterns of loosening of polyethylene keeled glenoid components after shoulder arthroplasty for primary osteoarthritis: Results of a multicenter study with more than five years of follow-up.
        J Bone Joint Surg Am. 2012; 94: 145-150https://doi.org/10.2106/JBJS.J.00699
        • Wirth M.A.
        • Agrawal C.M.
        • Mabrey J.D.
        • Dean D.D.
        • Blanchard C.R.
        • Miller M.A.
        • et al.
        Isolation and characterization of polyethylene wear debris associated with osteolysis following total shoulder arthroplasty.
        J Bone Joint Surg Am. 1999; 81: 29-37
        • Wirth M.A.
        • Rockwood Jr., C.A.
        Complications of total shoulder-replacement arthroplasty.
        J Bone Joint Surg Am. 1996; 78: 603-616
        • Yongpravat C.
        • Lester J.D.
        • Saifi C.
        • Trubelja A.
        • Greiwe R.M.
        • Bigliani L.U.
        • et al.
        Glenoid morphology after reaming in computer-simulated total shoulder arthroplasty.
        J Shoulder Elbow Surg. 2012; ([published online])
      1. Zhang J, Yongpravat C, Dyrszka MD, Levine WN, Gardner TR, Ahmad CS. Effect of implant shape and material properties on stresses in the glenoid components of total shoulder arthroplasties—a finite element analysis. Presented at the ASME Summer Bioengineering Conference, Naples, FL, USA; 2010. http://asme.pinetec.com/sbc2010/.